Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619879

RESUMEN

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Asunto(s)
Contaminantes Ambientales , Hígado Graso , Hepatopatías Alcohólicas , Bifenilos Policlorados , Masculino , Ratones , Animales , Multiómica , Ratones Endogámicos C57BL , Etanol/toxicidad , Etanol/metabolismo , Hígado/metabolismo , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Zinc/metabolismo , Tirosina/metabolismo
2.
Commun Med (Lond) ; 4(1): 70, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594350

RESUMEN

BACKGROUND: Despite wide scale assessments, it remains unclear how large-scale severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. METHODS: We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible ( S ), vaccinated ( V ), variant-specific infected ( I 1 and I 2 ), recovered ( R ), and seropositive ( T ) model ( S V I 2 R T ) tracked prevalence longitudinally. This was related to wastewater concentration. RESULTS: Here we show the 64% county vaccination rate translate into about a 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence is a 24-fold increase of infection counts, which correspond to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration have the strongest correlation (r = 0.95) at 1 week lag. CONCLUSIONS: Our study underscores the importance of continuing environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.


It is unclear how large-scale COVID-19 vaccination impacts wastewater concentration or overall disease burden. Here, we developed a mathematical surveillance model that allows estimation of overall vaccine impact based on the amount of SARS-CoV-2 in wastewater, seroprevalence and the number of cases admitted to hospitals between April 2021­August 2021 in Jefferson County, Kentucky USA. We found that a 64% vaccination coverage correlated to a 61% decrease in COVID-19 cases. The emergence of the SARS-CoV-2 Delta variant during the time of the surveillance directly correlated with a sharp increase in infection incidence as well as viral counts in wastewater. The hospitalization burden was closely reflected by the viral count found in the wastewater, indicating that post-vaccine environmental surveillance can be an effective method of estimating changing disease prevalence in future pandemics.

4.
Front Immunol ; 15: 1316228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370409

RESUMEN

Background: It is well established that females are more susceptible to the toxic effects of alcohol, although the exact mechanisms are still poorly understood. Previous studies noted that alcohol reduces the expression of mitogen-activated protein kinase phosphatase 1 (MKP1), a negative regulator of mitogen-activated protein kinases (MAPK) in the liver. However, the role of hepatocyte- specific MKP1 in the pathogenesis of alcohol-associated liver disease (ALD) remains uncharacterized. This study aimed to evaluate the role of hepatocyte-specific MKP1 in the susceptibility and sexual dimorphism in alcohol-induced liver injury. Methods: C57Bl/6 mice were used in an intragastric ethanol feeding model of alcohol-associated steatohepatitis (ASH). Hepatocyte-specific Mkp1-/- knockout and (Mkp1+/+ "f/f" male and female mice were subjected to the NIAAA chronic plus binge model. Primary mouse hepatocytes were used for in vitro studies. Liver RNA sequencing was performed on an Illumina NextSeq 500. Liver injury was evaluated by plasma alanine transaminase (ALT), hepatic ER stress and inflammation markers. Statistical analysis was carried out using ANOVA and the unpaired Student's t-test. Results: ASH was associated with the severe injury accompanied by increased endoplasmic reticulum (ER) stress and significant downregulation of Dusp1 mRNA expression. In vitro, ethanol treatment resulted in a time-dependent decrease in Dusp1 mRNA and protein expression in primary hepatocytes in both males and females; however, this effect was significantly more pronounced in hepatocytes from females. In vivo, female mice developed more liver injury in a chronic plus binge model which was accompanied by a significant decrease in liver Dusp1 mRNA expression. In comparison, liver Dusp1 was not changed in male mice, while they developed milder injury to alcohol. Mkp1 deletion in hepatocytes led to increased alcohol induced liver injury, ER stress and inflammation in both sexes. Conclusion: Hepatocyte Mkp1 plays a significant role in alcohol induced liver injury. Alcohol downregulates Mkp1 expression in hepatocytes in a sex dependent manner and could play a role in sexual dimorphism in increased female susceptibility to alcohol.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hígado Graso Alcohólico , Hepatopatías Alcohólicas , Masculino , Femenino , Ratones , Animales , Caracteres Sexuales , Hepatocitos/metabolismo , Etanol/toxicidad , Hígado Graso Alcohólico/genética , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/farmacología
5.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38291899

RESUMEN

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Plásticos , Animales , Ratones , Plásticos/metabolismo , Plásticos/farmacología , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacología , Ratones Endogámicos C57BL , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Aumento de Peso
6.
Sci Rep ; 13(1): 21254, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040794

RESUMEN

Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.


Asunto(s)
Fosforilación Oxidativa , Traumatismos de la Médula Espinal , Ratones , Animales , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Epigénesis Genética , Médula Espinal/metabolismo
7.
Cancer Med ; 12(23): 21172-21187, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037545

RESUMEN

AIMS: Macrophages play an essential role in cancer development. Tumor-associated macrophages (TAMs) have predominantly M2-like attributes that are associated with tumor progression and poor patient survival. Numerous methods have been reported for differentiating and polarizing macrophages in vitro, but there is no standardized and validated model for creating TAMs. Primary cells show varying cytokine responses depending on their origin and functional studies utilizing these cells may lack generalization and validity. A distinct cell line-derived TAM-like M2 subtype is required to investigate the mechanisms mediated by anti-inflammatory TAMs in vitro. Our previous work demonstrated a standardized protocol for creating an M2 subtype derived from a human THP-1 cell line. The cell expression profile, however, has not been validated. The aim of this study was to characterize and validate the TAM-like M2 subtype macrophage created based on our protocol to introduce them as a standardized model for cancer research. METHODS AND RESULTS: Using qRT-PCR and ELISA, we demonstrated that proinflammatory, anti-inflammatory, and tumor-associated marker expression changed during THP-1-derived marcrophage development in vitro, mimicking a TAM-related profile (e.g., TNFα, IL-1ß). The anti-inflammatory marker IL-8/CXCL8, however, is most highly expressed in young M0 macrophages. Flow cytometry showed increased expression of CD206 in the final TAM-like M2 macrophage. Single-cell RNA-sequencing analysis of primary human monocytes and colon cancer tissue macrophages demonstrated that cell line-derived M2 macrophages resembled a TAM-related gene profile. CONCLUSIONS: The THP-1-derived M2 macrophage based on a standardized cell line model represents a distinct anti-inflammatory TAM-like phenotype with an M2a subtype profile. This model may provide a basis for in vitro investigation of functional mechanisms in a variety of anti-inflammatory settings, particularly colon cancer development.


Asunto(s)
Neoplasias del Colon , Macrófagos , Humanos , Células THP-1 , Línea Celular Tumoral , Macrófagos/metabolismo , Neoplasias del Colon/patología , Antiinflamatorios
8.
Genes (Basel) ; 14(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38136947

RESUMEN

While the role of G quadruplex (G4) structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on the alteration of the G4 secondary structure. A total of 37,515 G4 SNVs in the COSMIC database and 2378 in CLINVAR were identified. Of those, 7236 COSMIC (19.3%) and 457 (19%) of the CLINVAR variants result in G4 loss, while 2728 (COSMIC) and 129 (CLINVAR) SNVs gain a G4 structure. The remaining variants potentially affect the folding energy without affecting the presence of a G4. Analysis of mutational patterns in the G4 structure shows a higher selective pressure (3-fold) in the coding region on the template strand compared to the reverse strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter, and enhancer regions across strands.


Asunto(s)
G-Cuádruplex , Nucleótidos , Humanos , Mutación
9.
Hum Genomics ; 17(1): 114, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105239

RESUMEN

BACKGROUND: Despite a clear appreciation of the impact of human pathogens on community health, efforts to understand pathogen dynamics within populations often follow a narrow-targeted approach and rely on the deployment of specific molecular probes for quantitative detection or rely on clinical detection and reporting. MAIN TEXT: Genomic analysis of wastewater samples for the broad detection of viruses, bacteria, fungi, and antibiotic resistance genes of interest/concern is inherently difficult, and while deep sequencing of wastewater provides a wealth of information, a robust and cooperative foundation is needed to support healthier communities. In addition to furthering the capacity of high-throughput sequencing wastewater-based epidemiology to detect human pathogens in an unbiased and agnostic manner, it is critical that collaborative networks among public health agencies, researchers, and community stakeholders be fostered to prepare communities for future public health emergencies or for the next pandemic. A more inclusive public health infrastructure must be built for better data reporting where there is a global human health risk burden. CONCLUSIONS: As wastewater platforms continue to be developed and refined, high-throughput sequencing of human pathogens in wastewater samples will emerge as a gold standard for understanding community health.


Asunto(s)
Virus , Aguas Residuales , Humanos , Monitoreo Epidemiológico Basado en Aguas Residuales , Virus/genética , Bacterias/genética , Farmacorresistencia Microbiana/genética
10.
J Neurotrauma ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37917105

RESUMEN

Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.

11.
Biology (Basel) ; 12(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37887031

RESUMEN

BACKGROUND: Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. METHODS: Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). RESULTS: Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. CONCLUSIONS: These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH.

12.
Environ Toxicol Pharmacol ; 103: 104260, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683712

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.

13.
Res Sq ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546871

RESUMEN

Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.

14.
Sci Rep ; 13(1): 9193, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280306

RESUMEN

The integrated stress response (ISR)-activated transcription factors ATF4 and CHOP/DDIT3 may regulate oligodendrocyte (OL) survival, tissue damage and functional impairment/recovery in white matter pathologies, including traumatic spinal cord injury (SCI). Accordingly, in OLs of OL-specific RiboTag mice, Atf4, Chop/Ddit3 and their downstream target gene transcripts were acutely upregulated at 2, but not 10, days post-contusive T9 SCI coinciding with maximal loss of spinal cord tissue. Unexpectedly, another, OL-specific upregulation of Atf4/Chop followed at 42 days post-injury. However, wild type versus OL-specific Atf4-/- or Chop-/- mice showed similar white matter sparing and OL loss at the injury epicenter, as well as unaffected hindlimb function recovery as determined by the Basso mouse scale. In contrast, the horizontal ladder test revealed persistent worsening or improvement of fine locomotor control in OL-Atf4-/- or OL-Chop-/- mice, respectively. Moreover, chronically, OL-Atf-/- mice showed decreased walking speed during plantar stepping despite greater compensatory forelimb usage. Therefore, ATF4 supports, while CHOP antagonizes, fine locomotor control during post-SCI recovery. No correlation between those effects and white matter sparing together with chronic activation of the OL ISR suggest that in OLs, ATF4 and CHOP regulate function of spinal cord circuitries that mediate fine locomotor control during post-SCI recovery.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Animales , Ratones , Contusiones/patología , Oligodendroglía/patología , Recuperación de la Función/fisiología , Médula Espinal/patología , Factor de Transcripción CHOP/genética , Factores de Transcripción
15.
Environ Toxicol Pharmacol ; 100: 104138, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37137421

RESUMEN

Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Bifenilos Policlorados , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Bifenilos Policlorados/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa , ARN , Ratones Endogámicos C57BL
16.
Cells ; 12(8)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37190069

RESUMEN

Circular RNAs (circRNAs) are a recently discovered class of RNAs derived from protein-coding genes that have important biological and pathological roles. They are formed through backsplicing during co-transcriptional alternative splicing; however, the unified mechanism that accounts for backsplicing decisions remains unclear. Factors that regulate the transcriptional timing and spatial organization of pre-mRNA, including RNAPII kinetics, the availability of splicing factors, and features of gene architecture, have been shown to influence backsplicing decisions. Poly (ADP-ribose) polymerase I (PARP1) regulates alternative splicing through both its presence on chromatin as well as its PARylation activity. However, no studies have investigated PARP1's possible role in regulating circRNA biogenesis. Here, we hypothesized that PARP1's role in splicing extends to circRNA biogenesis. Our results identify many unique circRNAs in PARP1 depletion and PARylation-inhibited conditions compared to the wild type. We found that while all genes producing circRNAs share gene architecture features common to circRNA host genes, genes producing circRNAs in PARP1 knockdown conditions had longer upstream introns than downstream introns, whereas flanking introns in wild type host genes were symmetrical. Interestingly, we found that the behavior of PARP1 in regulating RNAPII pausing is distinct between these two classes of host genes. We conclude that the PARP1 pausing of RNAPII works within the context of gene architecture to regulate transcriptional kinetics, and therefore circRNA biogenesis. Furthermore, this regulation of PARP1 within host genes acts to fine tune their transcriptional output with implications in gene function.


Asunto(s)
ARN Circular , ARN , Empalme Alternativo , Intrones , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN/genética , ARN Circular/genética , ARN Circular/metabolismo , Animales , Drosophila melanogaster
17.
iScience ; 26(5): 106630, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37192973

RESUMEN

Natural IL-17-producing γδ T cells (γδT17 cells) are unconventional innate-like T cells that undergo functional programming in the fetal thymus. However, the intrinsic metabolic mechanisms of γδT17 cell development remain undefined. Here, we demonstrate that mTORC2, not mTORC1, selectively controls the functional fate commitment of γδT17 cells through regulating transcription factor c-Maf expression. scRNA-seq data suggest that fetal and adult γδT17 cells predominately utilize mitochondrial metabolism. mTORC2 deficiency results in impaired Drp1-mediated mitochondrial fission and mitochondrial dysfunction characterized by mitochondrial membrane potential (ΔΨm) loss, reduced oxidative phosphorylation (OXPHOS), and subsequent ATP depletion. Treatment with the Drp1 inhibitor Mdivi-1 alleviates imiquimod-induced skin inflammation. Reconstitution of intracellular ATP levels by ATP-encapsulated liposome completely rescues γδT17 defect caused by mTORC2 deficiency, revealing the fundamental role of metabolite ATP in γδT17 development. These results provide an in-depth insight into the intrinsic link between the mitochondrial OXPHOS pathway and γδT17 thymic programming and functional acquisition.

18.
Res Sq ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066424

RESUMEN

A 44-year-old female patient with multiple sclerosis (MS) treated with ocrelizumab was hospitalized with SARS-CoV-2 pneumonia three times over the course of five months, eventually expiring. Viral sequencing of samples from her first and last admissions suggests a single persistent SARS-CoV-2 infection. We hypothesize that her immunocompromised state, due to MS treatment with an immunosuppressive monoclonal antibody, prevented her from achieving viral clearance.

19.
Genes (Basel) ; 14(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36980918

RESUMEN

G-quadruplexes (G4s) are short secondary DNA structures located throughout genomic DNA and transcribed RNA. Although G4 structures have been shown to form in vivo, no current search tools that examine these structures based on previously identified G-quadruplexes and filter them based on similar sequence, structure, and thermodynamic properties are known to exist. We present a framework for clustering G-quadruplex sequences into families using the CD-HIT, MeShClust, and DNACLUST methods along with a combination of Starcode and BLAST. Utilizing this framework to filter and annotate clusters, 95 families of G-quadruplex sequences were identified within the human genome. Profiles for each family were created using hidden Markov models to allow for the identification of additional family members and generate homology probability scores. The thermodynamic folding energy properties, functional annotation of genes associated with the sequences, scores from different prediction algorithms, and transcription factor binding motifs within a family were used to annotate and compare the diversity within and across clusters. The resulting set of G-quadruplex families can be used to further understand how different regions of the genome are regulated by factors targeting specific structures common to members of a specific cluster.


Asunto(s)
G-Cuádruplex , Humanos , Genoma Humano , ADN/genética , Análisis de Secuencia de ADN , ARN
20.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976637

RESUMEN

Several preclinical studies have demonstrated that certain cytotoxic drugs enhance metastasis, but the importance of host responses triggered by chemotherapy in regulating cancer metastasis has not been fully explored. Here, we showed that multidose gemcitabine (GEM) treatment promoted breast cancer lung metastasis in a transgenic spontaneous breast cancer model. GEM treatment significantly increased accumulation of CCR2+ macrophages and monocytes in the lungs of tumor-bearing as well as tumor-free mice. These changes were largely caused by chemotherapy-induced reactive myelopoiesis biased toward monocyte development. Mechanistically, enhanced production of mitochondrial ROS was observed in GEM-treated BM Lin-Sca1+c-Kit+ cells and monocytes. Treatment with the mitochondria targeted antioxidant abrogated GEM-induced hyperdifferentiation of BM progenitors. In addition, GEM treatment induced upregulation of host cell-derived CCL2, and knockout of CCR2 signaling abrogated the pro-metastatic host response induced by chemotherapy. Furthermore, chemotherapy treatment resulted in the upregulation of coagulation factor X (FX) in lung interstitial macrophages. Targeting activated FX (FXa) using FXa inhibitor or F10 gene knockdown reduced the pro-metastatic effect of chemotherapy. Together, these studies suggest a potentially novel mechanism for chemotherapy-induced metastasis via the host response-induced accumulation of monocytes/macrophages and interplay between coagulation and inflammation in the lungs.


Asunto(s)
Factor X , Neoplasias Pulmonares , Ratones , Animales , Mielopoyesis , Macrófagos/patología , Monocitos/patología , Neoplasias Pulmonares/patología , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...